Scroll to zoom in...

SEARCHING FOR **ECCENTRICITY**

ISOBEL ROMERO-SHAW PAUL LASKY ERIC THRANE

BACKGROUND

- ★ Binary black holes are thought to form primarily via two channels: isolated and dynamical.
- The formation channel of a binary can be encoded in its masses, spins, and eccentricity. These properties are imprinted on its gravitational wave signal.
- Binary properties are measured by comparing signals to thousands of templates. Eccentricity is hard to measure, because eccentric templates are slow to generate.
- We use likelihood reweighting to measure the binary eccentricity of ten events from the first Gravitational Wave Transient Catalogue of LIGO and Virgo.

QUASI-CIRCULAR ECCENTRIC

METHOD

$$p_{\emptyset}(\theta|d) = \frac{\mathcal{L}_{\emptyset}(d|\theta) \, \pi(\theta)}{\mathcal{Z}_{\emptyset}}$$

For every sample, use inverse transform sampling from 1D likelihood over eccentricity to generate eccentricity value

Reweight initial posteriors using eccentricity-marginalised likelihood

FORMATION CHANNELS

ISOLATED

DYNAMICAL

RESULTS

FORMATION

Stellar binaries evolve into black hole binaries.

MERGE MECHANISM

Binaries tighten & merge due to the emission of gravitational waves.

BINARY PROPERTIES

Total mass below ~ 80M₀
Spins aligned with binary angular momentum vector
Eccentricity negligible at 10Hz

FORMATION

Black holes form bound pairs during interactions in star clusters.

MERGE MECHANISM

Binaries driven to merge through dynamical interactions & gravitational wave emission.

BINARY PROPERTIES

Total mass can be > 80M₀

Spins isotropically distributed & misaligned

Eccentricity can be ≥ 0.1 at 10Hz

Are YOU a dynamically-formed BBH?

THIS RESEARCH:

Romero-Shaw, Lasky & Thrane (2019), Searching for Eccentricity: Signatures of Dynamical Formation in the First Gravitational-Wave Transient Catalogue of LIGO and Virgo. Monthly Notices of the Royal Astronomical Society. FURTHER READING:

Isolated evolution: de Mink+2010, Ivanova+2013, de Mink+2016, Krukow+2016, Tagawa+2018, Celoria+2018

Dynamical formation: Morscher+2015, Gondan+2018, Rodriguez+2018a, Rodriguez+2018b, Rodriguez+2019

Likelihood reweighting: Payne+2019 Waveform models (quasi-circular, eccentric): Khan+2015, Cao+2017

Eccentric globular cluster mergers: Wen 2013, Samsing+2014, Samsing 2018, Zevin+2019, Fragione+2019

Distinguishing formation channels: Rodriguez+2016, Vitale+2017, Zevin+2017, Fishbach+2017, Wysocki+2018

Gravitational Wave Transient Catalogue 1: The LIGO Scientific Collaboration 2019

CONTACT: isobel.romero-shaw@monash.edu